PHYSICAL REVIEW B 78, 024202 (2008)

Melting of anisotropically confined Coulomb balls
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We found that an anisotropically confined Wigner crystal of Coulombic interacting particles exhibit inho-
mogeneous melting. The region of the system closest to the center of the cluster has a lower melting tempera-
ture than the extremum parts of the cluster. Moreover, the melting temperature of the cluster depends on the
specific ordered three-dimensional (3D) state; i.e., it is larger when the cluster is in the multiple ring structure
arrangement than when it has a nonsymmetric configuration.
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I. INTRODUCTION

Wigner crystallization! has been studied for decades in a
variety of systems such as an electron gas trapped on top of
liquid helium,? electrons trapped in quantum well structures,’
strongly coupled rf dusty plasmas,* vortex clusters in an iso-
tropic superfluid,® laser-cooled trapped ion systems,®’ and
dusty plasmas.® Formation of ordered clusters with nested
shells is expected to occur in expanding neutral plasmas.”!?

Charged classical particles isotropically confined by a
three-dimensional (3D) external potential self-organize in
concentric and almost equally spaced shells, which carry a
specific number of particles. The number of shells depends
on the total number of particles, and in general the number of
shells increases with the number of particles. The ground-
state (GS) configuration of systems of up to 12 particles con-
sists of a single shell. These configurations in fact form
three-dimensional regular polygons. From N=13 to 60, the
arrangement of particles in the ground-state configuration
form two shells except for the clusters with N=58 and 59
particles. For systems larger than 60 particles, ground-state
configurations start to appear with three shells. (For a review
about the static properties of 3D clusters, see Ref. 11.) The
dynamics of small 3D clusters is expected to have different
properties from that of large clusters due to finite size and
symmetry effects which are stronger in small clusters.

In our previous work (Ref. 12), we investigated in detail
the melting process of small isotropically confined 3D
Wigner crystals of charged particles interacting through Cou-
lomb or screened Coulomb potentials. We found that the GS
configuration of systems with N=6, 12, 13, and 38 particles
have large mechanical stability and are therefore identified as
magic clusters. The common characteristic of magic clusters
is that they are formed by one of the highly regular struc-
tures, i.e., an octahedron or icosahedron. For the system with
N=38 particles, each fivefold coordinated particle sits in one
of the corners of an icosahedron and is surrounded by sixfold
coordinated particles.

The solid-liquid transition in nonmagic clusters was found
to occur through two melting steps:!? First, at low tempera-
ture the nonmagic cluster undergoes an intrashell melting;
then, at higher temperature it undergoes a radial melting.
Differently, pronounced resistance against intrashell diffu-
sion is found in the magic cluster with N=38 particles, which
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gives the system the possibility to undergo an intermediate
melting process, the so-called intershell melting.

The effect of the anisotropy of the confinement on the
structural properties of 3D systems of equally charged par-
ticles was investigated in Ref. 13. The system was found to
self-organize in three different general structures, i.e., mul-
tiple rings, degenerate multiple rings, and nonsymmetric
structures, if the number of particles is small, typically
N=25 particles. For larger systems, i.e., N=50, multiple
ring structures were found in the external shell only if the
anisotropy parameter was smaller than a=0.2, or in the in-
ternal shell for more isotropic confinements, roughly
a=0.4. Our results on the structure of the GS configurations
as a function of the anisotropy parameter were summarized
in a phase diagram.

In this paper we investigate the dynamical properties of
anisotropically confined Wigner crystals as an extension of
our previous works!!~13 on isotropic Wigner balls. We inves-
tigate the homogeneity of the melting process and the effect
of the different ordered states, i.e., degenerate multiple rings,
multiple rings, and nonsymmetric structures, on the melting
process of the system.

The paper is organized as follows: In Sec. III our model
system is introduced, together with the methodology used to
find stable configurations and the molecular-dynamics (MD)
simulation approach. In Sec. III we investigate the melting
process of small clusters, i.e., systems ranging from N=10 to
18 particles. In Sec. IV we investigate the melting process of
larger clusters, i.e., systems with N=30 and 40 particles. Fi-
nally, in Sec. V we present our conclusions.

II. THEORETICAL MODEL

We study a 3D model system of N equally charged par-
ticles in an anisotropic confinement potential and interacting
through a repulsive potential. The potential energy of the
system is given by

N N 5
E=2, —mwy(x’ +y> + az’) + >, 4
=1 2 i>j €0|ri— r;

Y

where €, and g are, respectively, the dielectric constant and
the particle charge, r;=(x;,y;,z;) is the coordinate of the ith
particle, N is the total number of particles, wy is the confine-
ment frequency, and « is the anisotropy parameter of the
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confinement potential. We can write potential energy (1) in
dimensionless form as

1

N N
E=> (Z+y’ +ad)+ >, (2)
i=1

i>j r;— l'j|

if we express the coordinate and energy in the following
units: ry=(q*/ ye,)"" and Ey=q?*/ €yr, where y=mawy/2. The
temperature unit is given by T0=E0Kl}1, where kg is the
Boltzmann constant and #y=v2/ w,. All our numerical results
will be given in dimensionless units.

The stable configuration is a local or global minimum of
the potential energy, which is a function of only the number
of charged particles N and the eccentricity « of the confine-
ment potential. Our numerical method for obtaining the
stable state configuration is based on the Monte Carlo simu-
lation technique supplemented with the Newton method in
order to increase the accuracy of the found energy value.'*
By starting from a large number of different random initial
configurations, we believe that we were able to find all the
possible stable (i.e., ground state and metastable) configura-
tions. The configurational properties of anisotropically con-
fined systems were discussed in detail in our previous
paper.'3

To study the dynamical properties of a small cluster at a
specific temperature, first we use a variant of the velocity
Verlet algorithm,'> which rescales the velocity of the par-
ticles to bring the sample to a desired temperature. Second,
we implement the MD simulation using the velocity Verlet
algorithm."> A typical measurement done during this latter
stage is the calculation of the averaged displacement of the
particles from its equilibrium position.!'®!7

III. SMALL SYSTEMS

The GS configuration of a three-dimensional anisotropic
Wigner crystal has three different ordered states,!? i.e., mul-
tiple rings, degenerate multiple rings, and nonsymmetric
configurations. The system with N=18 particles is one of the
best representatives among the systems from N=4 up to 25
particles, since it has the three different structural phases as
function of a.

The GS configuration of the cluster with N=18 particles
and anisotropy parameter «=0.4 is shown in Fig. 1. Such a
GS configuration forms a multiple ring structure of arrange-
ment (1:(4X)4:1) ; i.e., it has two particles situated in the
extremities of the cluster along the z direction and a se-
quence of four rings with four particles each. Particles be-
longing to the same ring are represented by balls of the same
color. Bounds between balls are drawn only for enhancing
the visualization of the cluster.

The multiple ring structure can be thought of as a three-
dimensional system formed by blocks of two-dimensional
structures, i.e., the rings plus two isolated particles. In order
to determine the melting temperature of the different block
structures, we computed the radial averaged displacement
[defined in Eq. (3)]. Such a quantity was computed for three
different groups of particles, i.e., groups 1, 2, and 3, which
are respectively represented by the symbols g;, g,, and g3 in
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FIG. 1. (Color online) Ground-state configuration for the system
with N=18 particles and anisotropy parameter a=0.4. This configu-
ration corresponds to a multiple ring structure with arrangement
(1:(4X)4:1) , i.e., four parallel rings with four particles each plus
two isolated particles (black balls) situated in the extremities of the
cluster along the z direction. The cluster is divided in three groups,
i.e., groups 1 (g;), 2 (g,), and 3 (g3).

Fig. 1. Group g, comprises the two particles (represented by
black balls) situated in the extremities of the cluster along
the z direction. The third group, g3, consists of the two most
internal rings, i.e., the rings formed by the green and red
balls (see Fig. 1). The second group, g,, is formed by the two
other rings, i.e., the rings formed by the violet and blue balls.
It is clear from Fig. 1 that the cluster is symmetric with
respect to the z=0 plane. All particles belonging to the same
group have the same distance from the z=0 plane. As a re-
sult, the two different structures belonging to the same group
have the same dynamical properties.

The radial averaged displacement Ar is defined as fol-
lows:

N'y
AP = 1UN, 2 (P = (ry)la?, 3)
i=1

where y can assume the values y=1,2, and 3, which indi-
cates, respectively, groups 1, 2, and 3. N, is the number of
particles in group 7, r,; is the modulus of the vector position
of the ith particle of group 7, and a is the average distance
between particles. The calculation of the radial averaged dis-
placement as function of temperature allowed us to deter-
mine the different melting processes quantitatively. In order
to characterize the melting temperature, we made use of a
Lindemann-type criterion, which states that close to the melt-
ing process, the respective averaged displacement starts to
deviate rapidly from its low-temperature linear dependence.
We define the melting temperature as the temperature at
which the radial averaged displacement changes its linear
temperature dependence into a more rapid increase. Such a
fact is also related to previous investigation in two-
dimensional (2D) anisotropic Wigner crystals.!”-!8
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FIG. 2. (Color online) Radial averaged displacement computed
for group 1 (Ary ), group 2 (Ar, ), and group 3 (Ary,) of the system
with N=18 particles and anisotropy parameter a=0.4.

Figure 2 shows the temperature dependence of the radial
averaged displacement calculated for the different groups of
particles belonging to the system with N=18 particles and
anisotropy parameter «=0.4. The radial averaged displace-
ments Arg2 (black circles) and Arg3 (green squares) com-
puted respectively for groups g, and gz increase rapidly at
the same melting temperature, i.e., 7=0.015 (Fig. 2, black
arrow). The melting temperature for group g, is slightly
larger, i.e., T=0.017 (Fig. 2, blue arrow).

The particle trajectory obtained during a time interval of
400 time steps in a MD simulation at a temperature of T
=0.016 for the system with N=18 particles and anisotropy
parameter @«=0.4 is shown in Fig. 3. It is apparent from Fig.
3 that the dynamical property of group g; is different from
that of groups g, and gz. While the two particles belonging to
group g, (Fig. 3, black balls) remain oscillating around their
equilibrium position, particles of groups g, and gz do not
have a localized trajectory around their equilibrium posi-
tions. Rather, we can see that at the temperature of T
=0.016 particles belonging to one ring are already able to
jump to a position in the neighboring ring.

FIG. 3. (Color online) Particle trajectories obtained during a
time interval of 400 time steps for a system with N=18 particles
and anisotropy parameter a=0.4 at a temperature of 7=0.016. Dif-
ferent colors were used to distinguish between trajectories of neigh-
boring particles.
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The latter results, i.e., Figs. 2 and 3, showed that the melt-
ing process for the system with N=18 particles and aniso-
tropy confinement «=0.4 is inhomogeneous. In other words,
the melting process does not involve all particles; i.e., the
center of the cluster (regions g, and g;) melts first before the
extremities of the cluster, i.e., group g, with increasing tem-
perature. Such a picture is different from the one we found
for small isotropic systems.!? In the latter, the first melting
process is an intrashell melting, i.e., a low-temperature melt-
ing process involving all particles of the cluster.

In this paper we want to characterize the melting process
of anisotropic systems. Toward this objective, we will calcu-
late the z averaged displacement. Such a quantity is defined
analogously as done for the radial averaged displacement
[Eq. (3)] except that r is replaced by z.

Moreover, for any given system we will define two groups
of particles: the external group g, i.e., the group formed by
the set of two particles most distant from the center of the
cluster, i.e., with the largest modulus of the z coordinate of
the position vector; and the internal group g;,. For the case of
the GS configuration shown in Fig. 2, the external group g,
would correspond to group g;, while the internal group g;,
would correspond to the sum of groups g, and gz. The cor-
responding melting temperatures for the z averaged displace-
ment in the internal and external groups will be indicated by
Tex and T, respectively.

The z averaged displacement will be computed for the
internal and external groups. The melting process is consid-
ered inhomogeneous if the following condition is satisfied:
the value of the critical temperature of the external group T,
is larger than T;, and T,,, is larger than 7,,, where T,, is the
melting temperature of the system which is given by the
calculation of the radial averaged displacement.

Figures 4(a)—4(c) show the temperature dependence of the
z averaged displacement for the internal groups, Az, (red
squares), and external groups, Az, (black triangles), and the
radial averaged displacement Ar (blue circles) for the whole
system with N=18 particles and anisotropy parameters
equal, respectively, to @=0.2, 0.5, and 1.0. The melting tem-
perature for the isotropic system (a=1) is equal to T,
=0.051 [Fig. 4(c), blue arrow]. We can see that the z aver-
aged displacements calculated in the internal and external
groups increase very rapidly immediately when T# 0 [see
blue squares and black triangles in Fig. 4(c)]. The latter re-
sult shows that the melting process is homogeneous. The
very rapid increase in the z averaged displacement near T
~( is due to the intrashell melting process which occurs at
very low temperatures.'?

From Fig. 4(a) we can see that the radial averaged dis-
placement Ar and the z averaged displacement calculated for
the internal group, Agz;,, increase rapidly at the same tem-
perature 7=0.016 [see Fig. 4(a), black arrow]. The critical
temperature for the external group has a larger value, i.e.,
T=0.038 [see Fig. 4(a), red arrow]. Such a situation indicates
that for an anisotropy parameter of @=0.2, the melting pro-
cess of the system with N=18 particles is inhomogeneous.
Analogously, from Fig. 4(b) we can see that the melting pro-
cess for an anisotropy parameter of a=0.5 is also inhomo-
geneous. For this latter case, the melting temperatures of the
system, 7,,=0.0023 [Fig. 4(b), blue arrow], and of the inter-
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FIG. 4. (Color online) Temperature dependence of the z averaged displacements computed for the external and internal groups, i.e., Az
(red squares) and Az;, (black triangles), respectively, and the radial averaged displacement Ar (blue circles). (a), (b), and (c) correspond to
the system with N=18 particles and anisotropy parameter equal to @=0.2, 0.5, and 1.0, respectively.

nal group, T;,=0.0018 [Fig. 4(b), black arrow], are both
smaller than the critical temperature of the external group,
T..=0.012 [Fig. 4(b), red arrow]; i.e., the melting process
does not involve all particles.

Figure 5 shows the melting temperature T, (blue circles)
and the critical temperatures for the internal groups, T;
(black triangles), and external groups, T, (red squares), for
different system sizes as function of the anisotropy param-
eter. In each figure the region of « corresponding to nonsym-
metric configurations are left blank, while the regions of «
corresponding to degenerate multiple rings or multiple ring
structures are colored. Moreover, the symmetric arrangement
of particles, i.e., multiple rings and degenerate multiple
rings, are indicated for each system.

The critical temperatures for the system with N=18 par-
ticles and different values of the anisotropy parameter are
shown in Fig. 5(f). We can see from Fig. 5(f) that for «
>0.7 the melting process becomes homogeneous, i.e.,
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T,,> Ty, while that for <<0.7 the melting process becomes
inhomogeneous, i.e., T,,<T.,. Moreover, Fig. 5(f) also re-
veals that the decrease in the melting temperature is not
monotonic with decrease in the value of «a. In fact, we notice
[see red arrows in Fig. 5(f)] that for values of the anisotropy
parameter where the GS configuration corresponds to a sym-
metric arrangement, i.e., multiple rings or degenerate mul-
tiple rings, the melting temperature 7, of the system is en-
hanced. For example, for the anisotropy parameter a=0.4,
whose GS configuration corresponds to a multiple ring struc-
ture of arrangement (1:(4X)4:1) , the melting temperature
is T,,=0.016, while that for a nonsymmetric structure at the
anisotropy parameters of @=0.3 and 0.5 the melting tem-
perature are, respectively, 7,,=0.003 and 0.0035. Neverthe-
less, we can see that the melting temperature of the system
initially decreases with decreasing anisotropy parameter. For
instance, for @=1.0 the melting temperature is 7,,=0.051
and its value decreases to 7,,=0.048, 0.040, 0.011, and 0.006
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FIG. 5. (Color online) The critical temperature of the system 7, (blue circles), the critical temperature of the external (T,,,) and internal
(T;,) groups of particles are shown for systems with different number of particles, N, as a function of the anisotropy parameter . In each
figure the region of « corresponding to nonsymmetric configurations are left blank. The regions of a corresponding to degenerate multiple
rings or multiple ring structures are colored as blue, green, and yellow; the symmetric arrangements are indicated.
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for «=0.9, 0.8, 0.7, and 0.6, respectively. Isotropic systems
have large melting temperature due to the large value of the
potential barrier between shells. If the temperature of the
system is small, particles will remain trapped to one of the
shells and will not have enough kinetic energy to overcome
the potential barrier between shells. However, as the aniso-
tropy parameter decreases, the cluster gradually obtains a
more prolate shape. In a prolate cluster, the distance between
particles belonging to the different elliptic shells is smaller
than the ones in a spherical cluster. As a result, prolate clus-
ters have lower barrier potentials between shells than spheri-
cal clusters. This is the reason that the melting temperature
of slightly anisotropic systems is reduced when decreasing
the value of the anisotropy parameter.

The GS configuration for the system with N=9 particles
does not have high-symmetry arrangements. We calculated
the critical temperature of this system for different values of
the anisotropy parameter [see Fig. 5(a)]. One notices that
initially the melting temperature of the system 7, decreases
as the anisotropy parameter decreases. Moreover, the system
with N=9 particles also presents inhomogeneous melting for
very anisotropic confinements, i.e., «<<0.5. For example, for
a=0.1 the melting temperature of the system is 7,,=0.023,
while the critical temperature of the external group is much
larger, i.e., T.=0.079.

The systems with N=10, 11, and 14 particles have regions
of the anisotropy parameter a where the GS configurations
correspond to a high-symmetry arrangement. Those regions
are indicated by the colored areas in Figs. 5(b), 5(c), and
5(e), respectively. In all cases we can find an increase in the
melting temperature when the system is in the multiple ring
or degenerate multiple ring configuration. Moreover, for very
anisotropic confinements, the critical temperature of the ex-
ternal group T.,, (red squares) is substantially larger than the
melting temperature of the system 7, (blue circles). For ex-
ample, for the system with N=10, 11, 12, and 14 and
a=0.1 [see, respectively, Figs. 5(b)-5(¢)], the melting tem-
peratures are much lower, i.e., 7,,=0.010,0.0094,0.022, and
0.02, respectively, than the critical temperature of the exter-
nal groups, i.e., 7,,,=0.079,0.078,0.079, and 0.075, respec-
tively.

IV. LARGE SYSTEMS: N=30 AND 40

The melting process of small isotropically confined
Wigner crystals consists of two steps as the temperature of
the system increases:!'? First, at low temperature, intershell
melting takes place; and when temperature is further in-
creased, finally radical melting occurs. The increase in the
number of particles leads to the formation and growth of a
body-centered cubic particle arrangement in the internal re-
gion of the cluster. As a result, the two melting steps typi-
cally found in small clusters gives way to a melting process
ruled by the dynamics found in the bulk of the cluster."”

In Sec. III we showed that inhomogeneous melting is
typical for highly anisotropic clusters, i.e., roughly for aniso-
tropy parameter a=0.5. In this section we investigate how
the inhomogeneous melting process responds to an increase
in the cluster size. As an example, we consider systems with
N=30 and 40 particles.
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FIG. 6. (Color online) (a) and (b) display the critical melting
temperatures as function of the anisotropy parameter for systems
with N=30 and 40 particles, respectively.

The distinct critical temperatures for the system with
N=30 particles and anisotropy parameter varying from
a=0.1 to 1.0 in steps of Aa=0.1 are shown in Fig. 6(a).
From Fig. 6(a) we can clearly see that the melting process is
inhomogeneous (homogeneous) when a<0.5 (a>0.5).
Analogously, we find the same picture for the system with
N=40 particles [see Fig. 6(b)]. In the latter case, the critical
value of the anisotropy parameter, i.e., the value of @ which
separates the inhomogeneous from the homogeneous melting
regimes, is equal to a=0.4. We found that this is a general
trend, namely, the critical « value decreases with increasing
N.

V. CONCLUSIONS

Using MD simulation, we investigated the melting pro-
cesses of a finite-size 3D system of equally charged particles
confined by an external anisotropic confinement potential.
We assumed that the particles interact via a Coulombic in-
terparticle interaction potential. Our theoretical model is ap-
plicable to systems such as dusty plasmas and colloids. It is
expected that the found physical behavior is qualitatively the
same for other isotropic interaction potentials as, e.g., a
screened Coulomb potential.

We found that the melting of the system becomes inho-
mogeneous, i.e., the melting process is not uniform through-
out the cluster, as the anisotropy parameter decreases. The
region of the system closest to the center of the cluster has
lower melting temperature than the extremum parts of the
cluster. Additionally, the melting temperature of the cluster
depends on the specific ordered state; i.e., it is larger when
the cluster is in the multiple ring or degenerate multiple ring
configuration. Moreover, inhomogeneous melting was veri-
fied to happen both for small and large systems.
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